Publications by authors named "H J M Swagten"

The recently discovered interlayer Dzyaloshinskii-Moriya interaction (IL-DMI) in multilayers with perpendicular magnetic anisotropy favors canting of spins in the in-plane direction. It could thus stabilize intriguing spin textures such as Hopfions. A key requirement for nucleation is to control the IL-DMI.

View Article and Find Full Text PDF

Topologically protected magnetic structures provide a robust platform for low power consumption devices for computation and data storage. Examples of these structures are skyrmions, chiral domain walls, and spin spirals. Here, we use scanning electron microscopy with polarization analysis to unveil the presence of chiral counterclockwise Néel spin spirals at the surface of a bulk van der Waals ferromagnet FeGeTe (FGT) at zero magnetic field.

View Article and Find Full Text PDF

Magnetic skyrmions are topological magnetic spin structures exhibiting particle-like behaviour. They are of strong interest from a fundamental viewpoint and for application, where they have potential to act as information carriers in future low-power computing technologies. Importantly, skyrmions have high physical stability because of topological protection.

View Article and Find Full Text PDF

Chiral magnetism, wherein there is a preferred sense of rotation of the magnetization, determines the chiral nature of magnetic textures such as skyrmions, domain walls, or spin spirals. Current research focuses on identifying and controlling the interactions that define the magnetic chirality in thin film multilayers. The influence of the interfacial Dzyaloshinskii-Moriya interaction (IDMI) and, recently, the dipolar interactions have been reported.

View Article and Find Full Text PDF

The stabilization of chiral magnetic domain walls and skyrmions has been attributed to the actively investigated Dzyaloshinskii-Moriya interaction. Recently, however, predictions were made that suggest dipolar interactions can also stabilize chiral domain walls and skyrmions, but direct experimental evidence has been lacking. Here we show that dipolar interactions can indeed stabilize chiral domain walls by directly imaging the magnetic domain walls using scanning electron microscopy with polarization analysis in archetype Pt/CoB/Ir thin film multilayers.

View Article and Find Full Text PDF