Background: Friedreich's ataxia is an inherited, progressive, neurodegenerative disease that typically begins in childhood. Disease severity is commonly assessed with rating scales, such as the modified Friedreich's Ataxia Rating Scale, which are usually administered in the clinic by a neurology specialist.
Objective: This study evaluated the utility of home-based, self-administered digital endpoints in children with Friedreich's ataxia and unaffected controls and their relationship to standard clinical rating scales.
We introduce HistoNet, a deep neural network trained on normal tissue. On 1690 slides with rat tissue samples from 6 preclinical toxicology studies, tissue regions were outlined and annotated by pathologists into 46 different tissue classes. From these annotated regions, we sampled small 224 × 224 pixels images (patches) at 6 different levels of magnification.
View Article and Find Full Text PDFSeveral deep learning approaches have been proposed to address the challenges in computational pathology by learning structural details in an unbiased way. Transfer learning allows starting from a learned representation of a pretrained model to be directly used or fine-tuned for a new domain. However, in histopathology, the problem domain is tissue-specific and putting together a labelled data set is challenging.
View Article and Find Full Text PDFAnalyzing human gait with inertial sensors provides valuable insights into a wide range of health impairments, including many musculoskeletal and neurological diseases. A representative and reliable assessment of gait requires continuous monitoring over long periods and ideally takes place in the subjects' habitual environment (real-world). An inconsistent sensor wearing position can affect gait characterization and influence clinical study results, thus clinical study protocols are typically highly proscriptive, instructing all participants to wear the sensor in a uniform manner.
View Article and Find Full Text PDFBackground: Digital technologies and advanced analytics have drastically improved our ability to capture and interpret health-relevant data from patients. However, only limited data and results have been published that demonstrate accuracy in target indications, real-world feasibility, or the validity and value of these novel approaches.
Objective: This study aimed to establish accuracy, feasibility, and validity of continuous digital monitoring of walking speed in frail, elderly patients with sarcopenia and to create an open source repository of raw, derived, and reference data as a resource for the community.