A method for correlating reaction conditions with device performance was developed by combining Design-of-Experiments and machine-learning strategies in multistep device fabrication processes. This method allowed the "from-flask-to-device" optimisation of a macrocyclisation reaction yielding a mixture of methylated []cyclo--phenylenes, and a crude raw material was directly applied to the fabrication of Ir-doped organic light-emitting devices spin-coating. The method succeeded in eliminating energy-consuming and waste-producing separation and purification steps during device fabrication.
View Article and Find Full Text PDFPhotosynthetic water oxidation is a vital process responsible for producing dioxygen and supplying the energy necessary to sustain life on Earth. This fundamental reaction is catalyzed by the oxygen-evolving complex (OEC) of photosystem II, which houses the MnCaO cluster as its catalytic core. In this study, we specifically focus on the D1-Glu189 amino acid residue, which serves as a direct ligand to the MnCaO cluster.
View Article and Find Full Text PDFPurpose: We examined the association of walking and activities of daily living(ADL) with trunk and lower extremity muscle thickness in children with Down syndrome (DS).
Methods: 27 children with DS participated in this study. Walking was assessed using measurements of the maximal walking speed and step length, while ADL was assessed using the Pediatric Evaluation of DisabilityInventory (PEDI).
Basic concepts and theoretical foundations of broken symmetry (BS) and post BS methods for strongly correlated electron systems (SCES) such as electron-transfer (ET) diradical, multi-center polyradicals with spin frustration are described systematically to elucidate structures, bonding and reactivity of the high-valent transition metal oxo bonds in metalloenzymes: photosystem II (PSII) and cytochrome c oxidase (CcO). BS hybrid DFT (HDFT) and DLPNO coupled-cluster (CC) SD(T) computations are performed to elucidate electronic and spin states of CaMnO cluster in the key step for oxygen evolution, namely S [S with Mn(IV) = O + Tyr161-O radical] state of PSII and P [Fe(IV) = O + HO-Cu(II) + Tyr161-O radical] step for oxygen reduction in CcO. The cycle of water oxidation catalyzed by the CaMnO cluster in PSII and the cycle of oxygen reduction catalyzed by the Cu-Fe-Fe-Cu cluster in CcO are examined on the theoretical grounds, elucidating similar concerted and/or stepwise proton transfer coupled electron transfer (PT-ET) processes for the four-electron oxidation in PSII and four-electron reduction in CcO.
View Article and Find Full Text PDF