In this work, a model for anisotropic interactions between proteins and cellular membranes is proposed for large-scale continuum simulations. The framework of the model is based on dynamic density functional theory, which provides a formalism to describe the lipid densities within the membrane as continuum fields while still maintaining the fidelity of the underlying molecular interactions. Within this framework, we extend recent results to include the anisotropic effects of protein-lipid interactions.
View Article and Find Full Text PDFResolving the intricate details of biological phenomena at the molecular level is fundamentally limited by both length- and time scales that can be probed experimentally. Molecular dynamics (MD) simulations at various scales are powerful tools frequently employed to offer valuable biological insights beyond experimental resolution. However, while it is relatively simple to observe long-lived, stable configurations of, for example, proteins, at the required spatial resolution, simulating the more interesting rare transitions between such states often takes orders of magnitude longer than what is feasible even on the largest supercomputers available today.
View Article and Find Full Text PDFSoft condensed matter is challenging to study due to the vast time and length scales that are necessary to accurately represent complex systems and capture their underlying physics. Multiscale simulations are necessary to study processes that have disparate time and/or length scales, which abound throughout biology and other complex systems. Herein we present ezAlign, an open-source software for converting coarse-grained molecular dynamics structures to atomistic representation, allowing multiscale modeling of biomolecular systems.
View Article and Find Full Text PDFThe Martini model is a popular force field for coarse-grained simulations. Membranes have always been at the center of its development, with the latest version, Martini 3, showing great promise in capturing more and more realistic behavior. In this chapter we provide a step-by-step tutorial on how to construct starting configurations, run initial simulations and perform dedicated analysis for membrane-based systems of increasing complexity, including leaflet asymmetry, curvature gradients and embedding of membrane proteins.
View Article and Find Full Text PDF