The VASARI MRI feature set is a quantitative system designed to standardise glioma imaging descriptions. Though effective, deriving VASARI is time-consuming and seldom used clinically. We sought to resolve this problem with software automation and machine learning.
View Article and Find Full Text PDFThe architecture of the brain is too complex to be intuitively surveyable without the use of compressed representations that project its variation into a compact, navigable space. The task is especially challenging with high-dimensional data, such as gene expression, where the joint complexity of anatomical and transcriptional patterns demands maximum compression. The established practice is to use standard principal component analysis (PCA), whose computational felicity is offset by limited expressivity, especially at great compression ratios.
View Article and Find Full Text PDFOur knowledge of the organisation of the human brain at the population-level is yet to translate into power to predict functional differences at the individual-level, limiting clinical applications and casting doubt on the generalisability of inferred mechanisms. It remains unknown whether the difficulty arises from the absence of individuating biological patterns within the brain, or from limited power to access them with the models and compute at our disposal. Here we comprehensively investigate the resolvability of such patterns with data and compute at unprecedented scale.
View Article and Find Full Text PDF