The virulence factor SpvB is a crucial component for the intracellular growth and infection process of Salmonella enterica. The SpvB protein mediates the ADP-ribosylation of actin in infected cells and is assumed to be delivered directly from the engulfed bacteria into the host cell cytosol. Here we used the binary Clostridium botulinum C2 toxin as a transport system for the catalytic domain of SpvB (C/SpvB) into the host cell cytosol.
View Article and Find Full Text PDFC2 toxin from Clostridium botulinum is composed of the enzyme component C2-I, which ADP-ribosylates actin, and the binding and translocation component C2-II, responsible for the interaction with eukaryotic cell receptors and the following endocytosis. Three C2-I crystal structures at resolutions of up to 1.75 A are presented together with a crystal structure of C2-II at an appreciably lower resolution and a model of the prepore formed by fragment C2-IIa.
View Article and Find Full Text PDFThe SpvB protein from Salmonella enterica was recently discovered as an actin-ADP-ribosylating toxin. SpvB is most likely delivered via a type-III secretion system into eukaryotic cells and does not have a binding/translocation component. This is in contrast to the family of binary actin-ADP-ribosylating toxins from various Bacillus and Clostridium species.
View Article and Find Full Text PDFP2X receptors are cation channels gated by extracellular ATP and related nucleotides. Because of the widespread distribution of P2X receptors and the high subtype diversity, potent and selective antagonists are needed to dissect their roles in intact tissues. Based on suramin as a lead compound, several derivates have been described that block recombinant P2X receptors with orders of magnitude higher potency than suramin.
View Article and Find Full Text PDF