Publications by authors named "H Hillman"

Article Synopsis
  • Researchers developed a new high-throughput method to analyze the transcriptomes of immune cell complexes without needing complex data processing, focusing on T cells and monocytes during active infections.
  • The study revealed distinct gene expression patterns in T cells and monocytes in blood samples from patients with active tuberculosis (TB) and dengue, highlighting their immune interactions.
  • Findings indicated that T cells in these complexes displayed characteristics of active immune responses, including effector cell traits and RNA exchange with monocytes, which suggests a deeper understanding of immune interactions during infections.
View Article and Find Full Text PDF

Macrophages are essential immune cells present in all tissues, and are vital for maintaining tissue homeostasis, immune surveillance, and immune responses. Considerable efforts have identified shared and tissue-specific gene programs for macrophages across organs during homeostasis. This information has dramatically enhanced our understanding of tissue-restricted macrophage programming and function.

View Article and Find Full Text PDF

Glucocorticoid synthesis by adrenal glands (AGs) is regulated by the hypothalamic-pituitary-adrenal axis to facilitate stress responses when the host is exposed to stimuli. Recent studies implicate macrophages as potential steroidogenic regulators, but the molecular mechanisms by which AG macrophages exert such influence remain unclear. In this study, we investigated the role of AG macrophages in response to cold challenge or atherosclerotic inflammation as physiologic models of acute or chronic stress.

View Article and Find Full Text PDF

Background: Trem2 (triggering receptor on myeloid cells 2), a surface lipid receptor, is expressed on foamy macrophages within atherosclerotic lesions and regulates cell survival, proliferation, and anti-inflammatory responses. Studies examining the role of Trem2 in atherosclerosis have shown that deletion of Trem2 leads to impaired foamy macrophage lipid uptake, proliferation, survival, and cholesterol efflux. Thus, we tested the hypothesis that administration of a Trem2 agonist antibody (AL002a) to atherogenic mice would enhance macrophage survival and decrease necrotic core formation to improve plaque stability.

View Article and Find Full Text PDF

Atherosclerosis is driven by the expansion of cholesterol-loaded 'foamy' macrophages in the arterial intima. Factors regulating foamy macrophage differentiation and survival in plaque remain poorly understood. Here we show, using trajectory analysis of integrated single-cell RNA sequencing data and a genome-wide CRISPR screen, that triggering receptor expressed on myeloid cells 2 (Trem2) is associated with foamy macrophage specification.

View Article and Find Full Text PDF