Flavivirus assembly at the endoplasmic reticulum is driven by the structural proteins envelope (E) and premembrane (prM). Here, contrary to the established paradigm for flavivirus assembly, we demonstrate that the biogenesis of flavivirus particles does not require an intact prM nor proteolytic activation. The expression of E preceded by a truncated version of prM (M-E) was sufficient for the formation of non-infectious Zika virus subviral particles and pseudo-infectious reporter virions.
View Article and Find Full Text PDFThe skin is a complex tissue that provides a strong physical barrier against invading pathogens. Despite this, many viruses can access the skin and successfully replicate in either the epidermal keratinocytes or dermal immune cells. In this review, we provide an overview of the antiviral T cell biology responding to cutaneous viral infections and how these responses differ depending on the cellular targets of infection.
View Article and Find Full Text PDF