Fluoroquinolones are a class of antibacterial agents used clinically to treat a wide array of bacterial infections and target bacterial type-II topoisomerases (DNA gyrase and topoisomerase IV). Fluoroquinolones, however potent, are susceptible to bacterial resistance with prolonged use, which limits their use in the clinic. Quinazoline-2,4-diones also target bacterial type-II topoisomerases and are not susceptible to bacterial resistance similar to fluoroquinolones, however, their potency pales in comparison to fluoroquinolones.
View Article and Find Full Text PDFIn the search for novel hybrid molecules by fusing two biologically active scaffolds into one heteromeric chemotype, we found that hybrids of azithromycin and ciprofloxacin/gatifloxacin 26j and 26l can inhibit the supercoiling activity of E. coli gyrase by poisoning it in a way similar to fluoroquinolones. This may modestly contribute to their potencies, which are equal to ciprofloxacin against constitutively resistant Staphylococcus aureus, whose growth is not inhibited by the presence of macrolides.
View Article and Find Full Text PDFFluoroquinolones substituted with N-1 biphenyl and napthyl groups were discovered to act as catalytically inhibitors of human topoisomerases I and II, and to possess anti-proliferative activity in vivo. Structural requirements for these novel quinolones to inhibit catalytic activity of human topoisomerase I have not been explored. In this work novel derivatives of the N-1 biphenyl fluoroquinolone were designed, synthesized and evaluated to understand structural requirements of the C-3 carboxylic acid, C-6 fluorine, C-7 aminomethylpyrrolidine, C-8 methoxy, and the N-1 biphenyl functional groups for hTopoI inhibition.
View Article and Find Full Text PDFA Mg-water bridge between the C-3, C-4 diketo moiety of fluoroquinolones and the conserved amino acid residues in the GyrA/ParC subunit is critical for the binding of a fluoroquinolone to a topoisomerase-DNA covalent complex. The fluoroquinolone UING-5-249 (249) can bind to the GyrB subunit through its C7-aminomethylpyrrolidine group. This interaction is responsible for enhanced activities of 249 against the wild type and quinolone-resistant mutant topoisomerases.
View Article and Find Full Text PDFFluoroquinolone (FQ)-resistant bacteria pose a major global health threat. Unanalysed genomic data from thousands of sequenced microbes likely contain important hints regarding the evolution of FQ resistance, yet this information lies fallow. Here we analysed the co-occurrence patterns of quinolone resistance mutations in genes encoding the FQ drug targets DNA gyrase (gyrase) and topoisomerase IV (topo-IV) from 36,402 bacterial genomes, representing 10 Gram-positive and 10 Gram-negative species.
View Article and Find Full Text PDF