Publications by authors named "H Hektor"

Hydrophobins are self-assembling proteins of fungal origin. Their ability to self-assemble into an amphipathic membrane is of interest for many different applications, ranging from medical and technical coatings to the production of proteinaceous glue and cosmetics. Assembled hydrophobins can modify surface characteristics, thus controling the binding properties of the surface; for example, enzymes can be actively and non-covalently immobilized on electrode surfaces and medical coatings can be improved for biocompatibility.

View Article and Find Full Text PDF

Hydrophobins are a class of small proteins that fulfill a wide spectrum of functions in fungal growth and development. They do so by self-assembling into an amphipathic membrane at hydrophilic-hydrophobic interfaces. The SC3 hydrophobin of Schizophyllum commune is the best-studied hydrophobin.

View Article and Find Full Text PDF

The physiochemical nature of surfaces can be changed by small proteins which are secreted by filamentous fungi. These proteins, called hydrophobins, are characterized by the presence of eight conserved cysteine residues and a typical hydropathy pattern. Upon contact with a hydrophilic-hydrophobic interface they self-assemble into highly insoluble amphipathic membranes.

View Article and Find Full Text PDF

The selectivity filter of the bacterial porin OmpF carries a small net charge close to -1 e and is therefore only slightly cation-selective. Calcium channels, on the other hand, contain four negatively charged glutamates, the EEEE-locus, and are among the most selective cation channels known. We aimed to turn the essentially nonselective OmpF into a Ca2+-selective channel.

View Article and Find Full Text PDF

Chemoautotrophic endosymbionts residing in Solemya velum gills provide this shallow water clam with most of its nutritional requirements. The cbb gene cluster of the S. velum symbiont, including cbbL and cbbS, which encode the large and small subunits of the carbon-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), was cloned and expressed in Escherichia coli.

View Article and Find Full Text PDF