Publications by authors named "H Hayashita-Kinoh"

Adeno-associated virus (AAV) vector can efficiently transduce therapeutic genes in various tissue types with less side effects; however, owing to complex multistep processes during manufacture, there have been surges in the pricing of recently approved AAV vector-based gene therapy products. This study aimed to develop a simple and efficient method for high-quality purification of AAV vector via tangential flow filtration (TFF), which is commonly used for concentration and diafiltration of solutions during AAV vector purification. We established a novel purification method using TFF and surfactants.

View Article and Find Full Text PDF

Adeno-associated virus (AAV) vector-based gene therapy is potentially curative for various genetic diseases; however, the development of a scalable purification method for full-genome AAV vectors remains crucial to increase productivity and reduce cost of GMP production. In this study, we developed a large-scale short-term purification method for functional full-genome AAV particles by using 2-step cesium chloride (CsCl) density-gradient ultracentrifugation with a zonal rotor. The 2-step CsCl method with a zonal rotor improves separation between empty and full-genome AAV particles, reducing the ultracentrifugation time (4-5 h) and increasing the AAV volume for purification.

View Article and Find Full Text PDF

Herein, a method to use of mesenchymal stem cells (MSCs) to modulate immune response against rAAV transduction in a canine Duchenne muscular dystrophy (DMD) model is presented. The aim is to overcome the immune response against adeno-associated virus (AAV) capsid itself as well as against the AAV-derived transgene.AAV is currently the most used viral vector because of its relative safety and high efficiency of gene transfer to nondividing cells.

View Article and Find Full Text PDF

Background: The adeno-associated virus (AAV) vector is a promising vector for ocular gene therapy. Surgical internal limiting membrane peeling before AAV vector administration is useful for efficient retinal transduction. However, no report has investigated localization of AAV vectors after administration into a post-vitrectomy eye.

View Article and Find Full Text PDF

Background: Multipotent mesenchymal stromal cells (MSCs) are potentially therapeutic for muscle disease because they can accumulate at the sites of injury and act as immunosuppressants. MSCs are attractive candidates for cell-based strategies that target diseases with chronic inflammation, such as Duchenne muscular disease (DMD). We focused on the anti-inflammatory properties of IL-10 and hypothesized that IL-10 could increase the typically low survival of MSCs by exerting a paracrine effect after transplantation.

View Article and Find Full Text PDF