Publications by authors named "H Havir"

Nonlinear effects play a central role in photonics as they form the foundation for most of the device functionalities such as amplification and quantum state preparation and detection. Typically the nonlinear effects are weak and emerge only at high photon numbers with strong drive. Here we present an experimental study of a Josephson junction -based high-impedance resonator.

View Article and Find Full Text PDF

We present a continuous microwave photon counter based on superconducting cavity-coupled semiconductor quantum dots. The device utilizes photon-assisted tunneling in a double quantum dot with tunneling events being probed by a third dot. Our device detects both single and multiple-photon absorption events independently, thanks to the energy tunability of a two-level double-dot absorber.

View Article and Find Full Text PDF

We explore the energetics of microwaves interacting with a double quantum dot photodiode and show wave-particle aspects in photon-assisted tunneling. The experiments show that the single-photon energy sets the relevant absorption energy in a weak-drive limit, which contrasts the strong-drive limit where the wave amplitude determines the relevant-energy scale and opens up microwave-induced bias triangles. The threshold condition between these two regimes is set by the fine-structure constant of the system.

View Article and Find Full Text PDF