Publications by authors named "H Haghi"

This study presents an experimental investigation of the influence of MB concentration on the resonance frequency of lipid-coated microbubbles (MBs). Expanding on theoretical models and numerical simulations from previous research, this work experimentally investigates the effect of MB size on the rate of resonance frequency increase with concentration, a phenomenon observed across MBs with two different lipid compositions: propylene glycol (PG) and propylene glycol and glycerol (PGG). Employing a custom-designed ultrasound attenuation measurement setup, we measured the frequency-dependent attenuation of MBs, isolating MBs based on size to generate distinct monodisperse sub-populations for analysis.

View Article and Find Full Text PDF

Ultrasonically excited microbubbles (MBs) have numerous applications in various fields, such as drug delivery, and imaging. Ultrasonically excited MBs are known to be nonlinear oscillators that generate secondary acoustic emissions in the media when excited by a primary ultrasound wave. The propagation of acoustic waves in the liquid is limited to the speed of sound, resulting in each MB receiving the primary and secondary waves at different times depending on their distance from the ultrasound source and the distance between MBs.

View Article and Find Full Text PDF

The problem of attenuation and sound speed of bubbly media has remained partially unsolved. Comprehensive data regarding pressure-dependent changes of the attenuation and sound speed of a bubbly medium are not available. Our theoretical understanding of the problem is limited to linear or semi-linear theoretical models, which are not accurate in the regime of large amplitude bubble oscillations.

View Article and Find Full Text PDF

Acoustically excited microbubbles (MBs) are known to be nonlinear oscillators with complex dynamics. This has enabled their use in a wide range of applications from medicine to industry and underwater acoustics. To better utilize their potential in applications and possibly invent new ones a comprehensive understanding of their dynamics is required.

View Article and Find Full Text PDF

Statement Of Problem: Implant-supported crowns made in both fully and partially digital workflows have been evaluated, but these studies have been mainly performed in vitro. Moreover, data on the comparison of clinical fitting and adjustment time for implant-supported crowns are limited.

Purpose: The purpose of this randomized clinical trial was to evaluate the clinical fit and adjustment time for implant-supported crowns produced by a partially and fully digital workflow in partially edentulous participants.

View Article and Find Full Text PDF