Publications by authors named "H H Wensink"

Biaxial nematic liquid crystals are fascinating systems sometimes referred to as the Higgs boson of soft matter because of experimental observation challenges. Here we describe unexpected states of matter that feature biaxial orientational order of colloidal supercritical fluids and gases formed by sparse rodlike particles. Colloidal rods with perpendicular surface boundary conditions exhibit a strong biaxial symmetry breaking when doped into conventional chiral nematic fluids.

View Article and Find Full Text PDF

Membranes are widely used for separation processes in applications such as water desalination, batteries and dialysis, and are crucial in key sectors of our economy and society. The majority of technologically exploited membranes are based on solid polymers and function as passive barriers, whose transport characteristics are governed by their chemical composition and nanostructure. Although such membranes are ubiquitous, it has proved challenging to maximize selectivity and permeability independently, leading to trade-offs between these pertinent characteristics.

View Article and Find Full Text PDF

We report here the highly ordered restacking of the layered phosphatoantimonic dielectric materials HMSbPO, (where M = Li, Na, K, Rb, Cs and 0 ≤ ≤ 1), from their nanosheets dispersed in colloidal suspension, induced by a simple pH change using alkaline bases. HSbPO aqueous suspensions are some of the rare examples of colloidal suspensions based on 2D materials exhibiting a lamellar liquid crystalline phase. Because the lamellar period can reach several hundred nanometers, the suspensions show vivid structural colors and because these colors are sensitive to various chemicals, the suspensions can be used as sensors.

View Article and Find Full Text PDF

In this paper, molecular chirality is studied for liquid-crystal fluids represented by hard rods with the addition of an attractive chiral dispersion term. Chiral forces between molecular pairs are assumed to be long-ranged and are described in terms of the pseudotensor of Goossens [W. J.

View Article and Find Full Text PDF

Elongated colloidal rods at sufficient packing conditions are known to form stable lamellar or smectic phases. Using a simplified volume-exclusion model, we propose a generic equation of state for hard-rod smectics that is robust against simulation results and is independent of the rod aspect ratio. We then extend our theory by exploring the elastic properties of a hard-rod smectic, including the layer compressibility (B) and bending modulus (K_{1}).

View Article and Find Full Text PDF