Publications by authors named "H H Saxild"

Familiarity with the structure and composition of normal tissue and an understanding of the changes that occur during disease is pivotal to the study of the human body. For decades, microscope slides have been central to teaching pathology in medical courses and related subjects at the University of Copenhagen. Students had to learn how to use a microscope and envisage three-dimensional processes that occur in the body from two-dimensional glass slides.

View Article and Find Full Text PDF

In Bacillus subtilis, the expression of genes encoding enzymes and other proteins involved in purine de novo synthesis and salvage is affected by purine bases and phosphoribosylpyrophosphate (PRPP). The transcription of the genes belonging to the PurR regulon is negatively regulated by the PurR protein and PRPP. The expression of the genes belonging to the G-box (XptR) regulon, including the pbuE gene, is negatively regulated by a riboswitch-controlled transcription termination mechanism.

View Article and Find Full Text PDF

In Bacillus subtilis expression of genes or operons encoding enzymes and other proteins involved in purine synthesis is affected by purine bases and nucleosides in the growth medium. The genes belonging to the PurR regulon (purR, purA, glyA, guaC, pbuO, pbuG, and the pur, yqhZ-folD, and xpt-pbuX operons) are controlled by the PurR repressor, which inhibits transcription initiation. Other genes are regulated by a less-well-described transcription termination mechanism that responds to the presence of hypoxanthine and guanine.

View Article and Find Full Text PDF

To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among approximately 4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes were predicted to be essential.

View Article and Find Full Text PDF

Expression of the P3 promoter of the Bacillus subtilis ureABC operon is activated during nitrogen-limited growth by PucR, the transcriptional regulator of the purine-degradative genes. Addition of allantoic acid, a purine-degradative intermediate, to nitrogen-limited cells stimulated transcription of ure P3 twofold. Since urea is produced during purine degradation in B.

View Article and Find Full Text PDF