Publications by authors named "H H Phan"

Background/objectives: Cold stress poses a significant threat to Asian rice cultivation, disrupting important physiological processes crucial for seedling establishment and overall plant growth. It is, thus, crucial to elucidate genetic pathways involved in cold stress tolerance response mechanisms.

Methods: We mapped , a ()-type homolog of rice, to a low-temperature seedling survivability (LTSS) QTL and used genomics, molecular genetics, and physiological assays to assess its role in plant resilience against low-temperature stress.

View Article and Find Full Text PDF

Objectives: (1) To evaluate the potential of producing huperzine (Hup) and anticholinesterase (AChE) activities of nine native Lycopodiaceae species collected in Vietnam; (2) Isolation, identification and characterization of a novel fungus producing both HupA and HupB isolated from Lycopodium casuarinoides Spring.

Results: All methanolic extracts of nine plants showed AChE inhibition from 8.55 to 71.

View Article and Find Full Text PDF

Background: In our previous study, we demonstrated that headaches are highly prevalent among medical students in Vietnam. In the present study, we provide estimates of the associated symptom burden and impaired participation, utilizing these estimates to assess headache-related healthcare needs within this population.

Methods: The study followed the standardized methodology established by the Global Campaign against Headache.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) poses significant risks for solid organ transplant recipients, who have atypical but poorly characterized immune responses to infection. We aim to understand the host immunologic and microbial features of COVID-19 in transplant recipients by leveraging a prospective multicenter cohort of 86 transplant recipients age- and sex-matched with 172 non-transplant controls. We find that transplant recipients have higher nasal SARS-CoV-2 viral abundance and impaired viral clearance, and lower anti-spike IgG levels.

View Article and Find Full Text PDF

In biological systems, heme-copper oxidase (HCO) enzymes play a crucial role in the oxygen reduction reaction (ORR), where the pivotal O-O bond cleavage of the (heme)Fe-peroxo-Cu intermediate is facilitated by active-site (peroxo core) hydrogen bonding followed by proton-coupled electron transfer (PCET) from a nearby (phenolic) tyrosine residue. A useful approach to comprehend the fundamental relationships among H-bonding/proton/H-atom donors and their abilities to induce O-O bond homolysis involves the investigation of synthetic, bioinspired model systems where the exogenous substrate properties (such as p and bond dissociation energy (BDE)) can be systematically altered. This report details the reactivity of a heme-peroxo-copper HCO model complex (LS-4DCHIm) toward a series of substituted catechol substrates that span a range of p and O-H bond BDE values, exhibiting different reaction mechanisms.

View Article and Find Full Text PDF