Tumor tissue collections are used to uncover pathways associated with disease outcomes that can also serve as targets for cancer treatment, ideally by comparing the molecular properties of cancer tissues to matching normal tissues. The quality of such collections determines the value of the data and information generated from their analyses including expression and modifications of nucleic acids and proteins. These biomolecules are dysregulated upon ischemia and decompose once the living cells start to decay into inanimate matter.
View Article and Find Full Text PDFBackground & Aims: The identification of colorectal cancer (CRC) molecular subtypes has prognostic and potentially diagnostic value for patients, yet reliable subtyping remains unavailable in the clinic. The current consensus molecular subtype (CMS) classification in CRCs is based on complex RNA expression patterns quantified at the gene level. The clinical application of these methods, however, is challenging due to high uncertainty of single-sample classification and associated costs.
View Article and Find Full Text PDFBiobanks are vital for high-throughput translational research, but the rapid development of novel molecular techniques, especially in omics assays, poses challenges to traditional practices and recommendations. In our study, we used biospecimens from oncological patients in Polish clinics and collaborated with the Indivumed Group. For serum/plasma samples, we monitored hemolysis, controlled RNA extraction, assessed cDNA library quality and quantity, and verified NGS raw data.
View Article and Find Full Text PDFFully automated machine learning (AutoML) for predictive modeling is becoming a reality, giving rise to a whole new field. We present the basic ideas and principles of Just Add Data Bio (JADBio), an AutoML platform applicable to the low-sample, high-dimensional omics data that arise in translational medicine and bioinformatics applications. In addition to predictive and diagnostic models ready for clinical use, JADBio focuses on knowledge discovery by performing feature selection and identifying the corresponding biosignatures, i.
View Article and Find Full Text PDFWithin the last decade, the science of molecular testing has evolved from single gene and single protein analysis to broad molecular profiling as a standard of care, quickly transitioning from research to practice. Terms such as genomics, transcriptomics, proteomics, circulating omics, and artificial intelligence are now commonplace, and this rapid evolution has left us with a significant knowledge gap within the medical community. In this paper, we attempt to bridge that gap and prepare the physician in oncology for multiomics, a group of technologies that have gone from looming on the horizon to become a clinical reality.
View Article and Find Full Text PDF