Publications by authors named "H H Jonker"

Copper (Cu) is a transition metal that plays crucial roles in cellular metabolism. Cu homeostasis is upregulated in many cancers and contributes to tumorigenesis. However, therapeutic strategies to target Cu homeostasis in cancer cells are rarely explored because small molecule Cu chelators have poor binding affinity in comparison to the intracellular Cu chaperones, enzymes, or ligands.

View Article and Find Full Text PDF

SSR128129E (SSR) is a unique small-molecule inhibitor of fibroblast growth factor receptors (FGFRs). SSR is a high-affinity allosteric binder that selectively blocks one of the two major FGFR-mediated pathways. The mechanisms of SSR activity were studied previously in much detail, allowing the identification of its binding site, located in the hydrophobic groove of the receptor D3 domain.

View Article and Find Full Text PDF

We present the high-resolution structure of stem-loop 4 of the 5'-untranslated region (5_SL4) of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) genome solved by solution state nuclear magnetic resonance spectroscopy. 5_SL4 adopts an extended rod-like structure with a single flexible looped-out nucleotide and two mixed tandem mismatches, each composed of a G•U wobble base pair and a pyrimidine•pyrimidine mismatch, which are incorporated into the stem-loop structure. Both the tandem mismatches and the looped-out residue destabilize the stem-loop structure locally.

View Article and Find Full Text PDF

Both experimental and theoretical structure determinations of RNAs have remained challenging due to the intrinsic dynamics of RNAs. We report here an integrated nuclear magnetic resonance/molecular dynamics (NMR/MD) structure determination approach to describe the dynamic structure of the CUUG tetraloop. We show that the tetraloop undergoes substantial dynamics, leading to averaging of the experimental data.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are major components of the innate immune defense. Accumulating evidence suggests that the antibacterial activity of many AMPs is dependent on the formation of amyloid-like fibrils. To identify novel fibril forming AMPs, we generated a spleen-derived peptide library and screened it for the presence of amyloidogenic peptides.

View Article and Find Full Text PDF