In order to explore temporal changes of predictability of El Niño Southern Oscillation (ENSO), a novel set of global biennial climate reforecasts for the historical period 1901-2010 has been generated using a modern initialized coupled forecasting system. We find distinct periods of enhanced long-range skill at the beginning and at the end of the twentieth century, and an extended multi-decadal epoch of reduced skill during the 1930s-1950s. Once the forecast skill extends beyond the first spring barrier, the predictability limit is much enhanced and our results provide support for the feasibility of skillful ENSO forecasts up to 18 months.
View Article and Find Full Text PDFThis study investigates the underlying climate processes behind the largest recorded mangrove dieback event along the Gulf of Carpentaria coast in northern Australia in late 2015. Using satellite-derived fractional canopy cover (FCC), variation of the mangrove canopies during recent decades are studied, including a severe dieback during 2015-2016. The relationship between mangrove FCC and climate conditions is examined with a focus on the possible role of the 2015-2016 El Niño in altering favorable conditions sustaining the mangroves.
View Article and Find Full Text PDFThe austral spring climate of 2020 was characterised by the occurrence of La Niña, which is the most predictable climate driver of Australian springtime rainfall. Consistent with this La Niña, the Bureau of Meteorology's dynamical sub-seasonal to seasonal forecast system, ACCESS-S1, made highly confident predictions of wetter-than-normal conditions over central and eastern Australia for spring when initialised in July 2020 and thereafter. However, many areas of Australia received near average to severely below average rainfall, particularly during November.
View Article and Find Full Text PDFNorthern Australia wet season (November-April) rainfall exhibits strong variability on multiyear timescales. In order to reveal the underlying mechanisms of this variability, we investigate observational records for the period 1900-2017. At multiyear timescales, the rainfall varies coherently across north-western Australia (NW) and north-eastern Australia (NE), but the variability in these two regions is largely independent.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDF