Designing efficient Ruthenium-based catalysts as practical anodes is of critical importance in proton exchange membrane water electrolysis. Here, we develop a self-assembly technique to synthesize 1 nm-thick rutile-structured high-entropy oxides (RuIrFeCoCrO) from naked metal ions assembly and oxidation at air-molten salt interface. The RuIrFeCoCrO requires an overpotential of 185 mV at 10 m A cm and maintains the high activity for over 1000 h in an acidic electrolyte via the adsorption evolution mechanism.
View Article and Find Full Text PDFGynecol Endocrinol
December 2025
Oocyte maturation arrest (OMA) may occur at different stages, including the germinal vesicle (GV), metaphase I (MI), and metaphase II (MII). A total maturation arrest of human oocytes is rarely observed during fertilization (IVF). We have identified a case of infertile female for whom all oocytes fail to mature and are arrested at MI.
View Article and Find Full Text PDFL-theanine, a non-protein amino acid naturally occurring in tea leaves, is recognized for its antioxidant, anti-inflammatory, and neuroprotective properties. Despite its known benefits, the mechanisms by which L-theanine influences lifespan extension remain poorly understood. This study investigated the effects of L-theanine on the lifespan of and explored the underlying mechanisms.
View Article and Find Full Text PDFObjective: This study aimed to assess the feasibility of computer model-based evaluation of knee joint functional capacity in comparison with manual assessment.
Methods: This study consisted of two phases: (1) developing an automatic knee joint action recognition and classification system on the basis of improved YOLOX and (2) analyzing the feasibility of assessment by the software system and doctors, identifying the knee joint function of patients, and determining the accuracy of the software system. We collected 40-50 samples for use in clinical experiments.
Phonon modal nonequilibrium is believed to widely exist around nanoscale hotspots, which can significantly affect the performance of nano-electronic and optoelectronic devices. However, such a phenomenon has not been explicitly observed in 3D device semiconductors at the nanoscale. Here, by employing a tip-enhanced Raman thermal measurement approach, substantial phonon nonequilibrium in gallium nitride near sub-10 nm laser-excited hotspots is directly revealed for the first time.
View Article and Find Full Text PDF