Electron and hole transport characteristics were evaluated for perylene-based and pyrene-based compounds using electron-only and hole-only devices. The perylene presented a columnar hexagonal liquid crystal phase at room temperature with strong molecular π-stacking inside the columns. The pyrene crystallizes bellow 166 °C, preserving the close-packed columnar rectangular structure of the mesophase.
View Article and Find Full Text PDFThree tetraaryl-1,4-dihydropyrrolo[3,2-b]pyrrole derivatives containing different number of long alkoxy chains (2, 4 and 6) were synthesized, characterized and applied in Organic Light Emitting Diodes (OLEDs). The compounds showed good emission properties with Photoluminescence Quantum Yields (PLQYs) higher than 80 % in solution and 50 % in solid state (thin film). The solvatochromism results revealed a pronounced vibronic emission in methylcyclohexane and toluene, characterized by two distinct sharp emission peaks and a small redshift in the following order: methylcyclohexane>toluene>dichloromethane>tetrahydrofuran>acetonitrile.
View Article and Find Full Text PDFColumnar liquid crystals with very small molecular masses that form anisotropic glasses well above room temperature are obtained by mixed dissymmetric substitution of sym-triazine with ester-bearing phenyl and phenanthryl or tetrahelicenyl moieties. The combination of low molecular symmetry with configurational flexibility and short polar ester moieties stabilizes the mesophase over large temperature ranges and induces pronounced calorimetric glass transitions within the anisotropic fluid despite the smallness of the molecules. In contrast to more symmetrical homologs, no ester tails longer than ethyl are necessary to induce the liquid crystalline state, allowing for the near-absence of any insulating and weight-increasing alkyl periphery.
View Article and Find Full Text PDFTriply phenanthryl- and tetrahelicenyl-substituted triazine-hexaalkyl esters with short alkyl chains show glass transitions conveniently above room temperature within the hexagonal columnar liquid crystalline state, resulting in a solid columnar order at room temperature. As the hexagonal columnar mesophase is easily aligned with the director perpendicular to a solid substrate, such glassy columnar liquid matrices are aimed at for the orientation of guest emitters, to obtain anisotropic emission. A condition for face-on alignment on substrates are attainable melting and clearing temperatures, which is achieved with the moderately nonplanar tetrahelicenyl derivatives in spite of their short alkyl periphery.
View Article and Find Full Text PDFMost organic room-temperature phosphorescence (RTP) emitters do not show their RTP in solution. Here, we incorporated sulfur-containing thiophene bridges between the donor and acceptor moieties in D A-type tristriazolotriazines (TTTs). The thiophene inclusion increased the spin-orbit coupling associated with the radiative T →S pathway, allowing RTP to be observed in solution for all compounds, likely assisted by protection of the emissive TTT-thiophene core from the environment by the bulky peripheral donors.
View Article and Find Full Text PDF