Background: TLN-4601 is a structurally novel farnesylated dibenzodiazepinone discovered using Thallion's proprietary DECIPHER® technology, a genomics and bioinformatics platform that predicts the chemical structures of secondary metabolites based on gene sequences obtained by scanning bacterial genomes. Our recent studies suggest that TLN-4601 inhibits the Ras-ERK MAPK pathway post Ras prenylation and prior to MEK activation. The Ras-ERK MAPK signaling pathway is a well-validated oncogenic cascade based on its central role in regulating the growth and survival of cells from a broad spectrum of human tumors.
View Article and Find Full Text PDFTLN-4601 is a farnesylated dibenzodiazepinone isolated from Micromonospora sp. with an antiproliferative effect on several human cancer cell lines. Although the mechanism of action of TLN-4601 is unknown, our earlier work indicated that TLN-4601 binds the PBR (peripheral benzodiazepine receptor; more recently known as the translocator protein or TSPO), an 18 kDa protein associated with the mitochondrial permeability transition (mPT) pore.
View Article and Find Full Text PDFTLN-4601 is a structurally novel farnesylated dibenzodiazepinone discovered through DECIPHER, Thallion's proprietary drug discovery platform. The compound was shown to have a broad cytotoxic activity (low micromol/l) when tested in the NCI 60 tumor cell line panel and has shown in-vivo antitumor activity in several xenograft models. Related to its farnesylated moiety, the effect of TLN-4601 on Ras mitogen-activated protein kinase signaling was assessed.
View Article and Find Full Text PDFThe deposited strain of the hazimicin producer, Micromonospora echinospora ssp. challisensis NRRL 12255 has considerable biosynthetic capabilities as revealed by genome scanning. Among these is a locus containing both type I and type II PKS genes.
View Article and Find Full Text PDFAs a continuation of our efforts to discover and develop the apoptosis inducing 4-aryl-4H-chromenes as potential anticancer agents, we explored the removal of the chiral center at the 4-position and prepared a series of 4-aryl-2-oxo-2H-chromenes. It was found that, in general, removal of the chiral center and replacement of the 2-amino group with a 2-oxo group were tolerated and 4-aryl-2-oxo-2H-chromenes exhibited SAR similar to 4-aryl-2-amino-4H-chromenes. The 4-aryl-2-oxo-2H-chromenes with a N-methyl pyrrole fused at the 7,8-positions were highly active with compound 2a having an EC(50) value of 13 nM in T47D cells.
View Article and Find Full Text PDF