van der Waals heterostructures have emerged as an ideal platform for creating engineered artificial electronic states. While vertical heterostructures have been extensively studied, realizing high-quality lateral heterostructures with atomically sharp interfaces remains a major experimental challenge. Here, we advance a one-pot two-step molecular beam lateral epitaxy approach and successfully synthesize atomically well-defined 1T-VSe─1H-NbSe lateral heterostructures.
View Article and Find Full Text PDFRealization of topological quantum states in carbon nanostructures has recently emerged as a promising platform for hosting highly coherent and controllable quantum dot spin qubits. However, their adjustable manipulation remains elusive. Here, we report the atomically accurate control of the hybridization level of topologically protected quantum edge states emerging from topological interfaces in bottom-up-fabricated π-conjugated polymers.
View Article and Find Full Text PDFFractional charges are one of the wonders of the fractional quantum Hall effect. Such objects are also anticipated in two-dimensional hexagonal lattices under time reversal symmetry-emerging as bound states of a rotating bond texture called a Kekulé vortex. However, the physical mechanisms inducing such topological defects remain elusive, preventing experimental realization.
View Article and Find Full Text PDFProgress in layered van der Waals materials has resulted in the discovery of ferromagnetic and ferroelectric materials down to the monolayer limit. Recently, evidence of the first purely 2D multiferroic material was reported in monolayer NiI. However, probing multiferroicity with scattering-based and optical bulk techniques is challenging on 2D materials, and experiments on the atomic scale are needed to fully characterize the multiferroic order at the monolayer limit.
View Article and Find Full Text PDFQuantum phase transitions (QPTs) driven by quantum fluctuations are transitions between distinct quantum phases of matter. At present, they are poorly understood and not readily controlled. Here, scanning tunneling microscopy (STM) and noncontact atomic force microscopy (nc-AFM) are used to explore atomic scale control over quantum phase transitions between two different topological quantum states of a well-defined π-conjugated polymer.
View Article and Find Full Text PDF