Publications by authors named "H Glickstein"

Glycogen storage disease type III (GSDIII) is a hereditary glycogenosis caused by deficiency of the glycogen debranching enzyme (GDE), an enzyme, encoded by , enabling glycogen degradation by catalyzing alpha-1,4-oligosaccharide side chain transfer and alpha-1,6-glucose cleavage. GDE deficiency causes accumulation of phosphorylase-limited dextrin, leading to liver disorder followed by fatal myopathy. Here, we tested the capacity of the new autophagosomal activator GHF-201 to alleviate disease burden by clearing pathogenic glycogen surcharge in the GSDIII mouse model .

View Article and Find Full Text PDF

Background: α-Synuclein (α-Syn) is a protein implicated in the pathogenesis of Parkinson's disease (PD). α-Syn has been shown to associate with membranes and bind acidic phospholipids. However, the physiological importance of these associations to the integrity of axons is not fully clear.

View Article and Find Full Text PDF

Uncontrolled elongation of glycogen chains, not adequately balanced by their branching, leads to the formation of an insoluble, presumably neurotoxic, form of glycogen called polyglucosan. To test the suspected pathogenicity of polyglucosans in neurological glycogenoses, we have modeled the typical glycogenosis Adult Polyglucosan Body Disease (APBD) by suppressing glycogen branching enzyme 1 (GBE1, EC 2.4.

View Article and Find Full Text PDF

Labile iron in hemosiderotic plasma and tissue are sources of iron toxicity. We compared the iron chelators deferoxamine, deferiprone, and deferasirox as scavengers of labile iron in plasma and cardiomyocytes at therapeutic concentrations. This comprised chelation of labile plasma iron (LPI) in samples from thalassemia patients; extraction of total cellular iron; accessing labile iron accumulated in organelles and preventing formation of reactive-oxidant species; and restoring impaired cardiac contractility.

View Article and Find Full Text PDF

Background: We describe the application of an ELISA-based assay (the Peptidomatrix) that can be used to simultaneously identify and quantitate a number of proteins in biological samples. The biological sample (blood component, biopsy, culture or other) is first lysed to release all the proteins, without any additional separation. The denatured proteins in the sample are then digested in bulk with the desired proteolytic enzyme(s).

View Article and Find Full Text PDF