With large wildfires becoming more frequent, we must rapidly learn how megafires impact biodiversity to prioritize mitigation and improve policy. A key challenge is to discover how interactions among fire-regime components, drought and land tenure shape wildfire impacts. The globally unprecedented 2019-2020 Australian megafires burnt more than 10 million hectares, prompting major investment in biodiversity monitoring.
View Article and Find Full Text PDFHabitat degradation and associated reductions in ecosystem functions can be reversed by reintroducing or 'rewilding' keystone species. Rewilding projects have historically targeted restoration of processes such as grazing regimes or top-down predation effects. Few projects focus on restoring decomposition efficiency, despite the pivotal role decomposition plays in global carbon sequestration and nutrient cycling.
View Article and Find Full Text PDFRestoration of degraded areas is now a central tool in humanity's response to continued species-loss. However, restoration projects often report exceedingly slow or failed recolonization of fauna, especially dispersal-constrained groups such as invertebrates. Active interventions via reintroducing or "rewilding" invertebrates may assist recolonization and speed up restoration of communities toward a desired target.
View Article and Find Full Text PDFUnder the Ecosystem Exploitation Hypothesis ecosystem productivity predicts trophic complexity, but it is unclear if spatial and temporal drivers of productivity have similar impacts. Long-term studies are necessary to capture temporal impacts on trophic structure in variable ecosystems such as deserts. We sampled ants and measured plant resources in the Simpson Desert, central Australia over a 22-year period, during which rainfall varied 10-fold.
View Article and Find Full Text PDF