Publications by authors named "H Gary-Gouy"

Calcium (Ca ) signaling controls T-cell activation and functions. Ca concentrations are locally detected and controlled by Ca -sensors (STIM1 and 2 detecting the depletion from ER stores channels) and Ca -channels (ORAI1-3 in the cell membrane and VDAC1 in the outer mitochondrial membrane). We first validated and titrated antibodies to assess the expression of these Ca -sensors and -channels in human and murine cells, and further devised a 18-antibodies mass cytometry panel to characterize their expression in primary murine lymphocyte subsets.

View Article and Find Full Text PDF

Background & Aims: Kupffer cells (KC) play a key role in the onset of inflammation in non-alcoholic steatohepatitis (NASH). The glucocorticoid receptor (GR) induces glucocorticoid-induced leucine zipper (GILZ) expression in monocytes/macrophages and is involved in several inflammatory processes. We hypothesized that the GR-GILZ axis in KC may contribute to the pathophysiology of obesity-induced liver inflammation.

View Article and Find Full Text PDF

DCs are the first immune cells to be exposed to allergens, including chemical sensitizers, such as nickel, a human TLR4 agonist that induces DC maturation. In ACD, DCs can interact with PMNs that are recruited and activated, leading, in particular, to ectosome release. The objective of this work was to characterize the effects of PMN-Ect on DC functions in an ACD context.

View Article and Find Full Text PDF

Homing of inflammatory cells to the liver is key in the progression of non-alcoholic steatohepatitis (NASH). An abnormal response of CD4+ T-cells from obese mice to the chemotactic effect of CXCL12 has been reported but the mechanism involved in this process and relevance in patients are unknown. We aimed to explore the mechanism involved in the abnormal chemotaxis of CXC chemokine ligand 12 (CXCL12) in several mouse models of NASH and the relevance in the context of human non-alcoholic fatty liver disease (NAFLD).

View Article and Find Full Text PDF

Chronic lymphocytic leukemia (CLL) cells with aggressive clinical properties express lipoprotein lipase (LPL), which generates activating ligands for the nuclear receptor peroxisome proliferator activated receptor (PPAR)α and allows fatty acids to be used as fuel. However, the role of PPARα in CLL is unclear. PPARα was found to be expressed by circulating CLL cells and highly associated with advanced stage disease.

View Article and Find Full Text PDF