This study introduces a flexible and scalable charge-trapping intermediate layer of conjugated polymeric film comprising [PANI/PEDOT:PSS] between the [PVA/PDDA] triboelectric layer and graphene-based [PVA/GNP-PSS] electrode using the layer-by-layer (LbL) assembly method. By varying the deposition layers, the optimal coating layout was identified as 2 and 8 bilayers of intermediate and triboelectric layers, respectively. The triboelectric nanogenerator (TENG) fabricated with this optimal configuration achieved peak output voltage and current of 180 V and 9 μA, respectively, at 3 Hz and 5 N against PDMS.
View Article and Find Full Text PDFSerious climate changes and energy-related environmental problems are currently critical issues in the world. In order to reduce carbon emissions and save our environment, renewable energy harvesting technologies will serve as a key solution in the near future. Among them, triboelectric nanogenerators (TENGs), which is one of the most promising mechanical energy harvesters by means of contact electrification phenomenon, are explosively developing due to abundant wasting mechanical energy sources and a number of superior advantages in a wide availability and selection of materials, relatively simple device configurations, and low-cost processing.
View Article and Find Full Text PDFThe development of triboelectric nanogenerators (TENGs) technology has advanced in recent years. However, TENG performance is affected by the screened-out surface charge density owing to the abundant free electrons and physical adhesion at the electrode-tribomaterial interface. Furthermore, the demand for flexible and soft electrodes is higher than that for stiff electrodes for patchable nanogenerators.
View Article and Find Full Text PDFMaterials (Basel)
September 2020
Recently, triboelectric nanogenerators (TENGs) have been widely utilized to address the energy demand of portable electronic devices by harvesting electrical energy from human activities or immediate surroundings. To increase the surface charge and surface area of negative TENGs, previous studies suggested several approaches such as micro-patterned arrays, porous structures, multilayer alignment, ion injections, ground systems and mixing of high dielectric constant materials. However, the preparation processes of these nanocomposite TENGs have been found to be complex and expensive.
View Article and Find Full Text PDFHistory And Admission Findings: A 32-year-old smoker was referred to our hospital for the evaluation of acute chest pain. 9 years earlier he had had a non Q-wave myocardial infarction. At that time, angiography showed widely patent coronary arteries without atherosclerotic lesions.
View Article and Find Full Text PDF