Background: Rhodopsin, the prototypic member of G protein-coupled receptors (GPCRs), undergoes isomerization of 11-cis-retinal to all-trans-retinal upon photoactivation. Although the basic mechanism by which rhodopsin is activated is well understood, the roles of whole transmembrane (TM) helix-III during rhodopsin photoactivation in detail are not completely clear.
Principal Findings: We herein use single-cysteine mutagenesis technique to investigate conformational changes in TM helices of rhodopsin upon photoactivation.
Rhodopsin is a highly specialized G protein-coupled receptor (GPCR) that is activated by the rapid photochemical isomerization of its covalently bound 11-cis-retinal chromophore. Using two-dimensional solid-state NMR spectroscopy, we defined the position of the retinal in the active metarhodopsin II intermediate. Distance constraints were obtained between amino acids in the retinal binding site and specific (13)C-labeled sites located on the beta-ionone ring, polyene chain, and Schiff base end of the retinal.
View Article and Find Full Text PDFThe study of membrane protein structure and function requires their high-level expression and purification in fully functional form. We previously used a tetracycline-inducible stable mammalian cell line, HEK293S-TetR, for regulated high-level expression of G-protein coupled receptors. We here report successfully using this method for high-level expression of de novo oligo-DNA assembled human CD81 gene.
View Article and Find Full Text PDFIntegral membrane proteins do not fare well when extracted from biological membranes and are unstable or lose activity in detergents commonly used for structure and function investigations. We show that phospholipid bicelles provide a valuable means of preserving alpha-helical membrane proteins in vitro by supplying a soluble lipid bilayer fragment. Both 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/3-[(cholamidopropyl)dimethyl-ammonio]-1-propane sulfonate (Chaps) and DMPC/l-alpha-1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) bicelles dramatically increase the stability of the mammalian vision receptor rhodopsin as well as its apoprotein, opsin.
View Article and Find Full Text PDFThe structure in the extracellular, intradiscal domain of rhodopsin surrounding the Cys110-Cys187 disulfide bond has been shown to be important for correct folding of this receptor in vivo. Retinitis pigmentosa misfolding mutants of the apoprotein opsin (such as P23H) misfold, as defined by a deficiency in ability to bind 11-cis retinal and form rhodopsin. These mutants also possess an abnormal Cys185-Cys187 disulfide bond in the intradiscal domain.
View Article and Find Full Text PDF