Quantum computation requires many qubits that can be coherently controlled and coupled to each other. Qubits that are defined using lithographic techniques have been suggested to enable the development of scalable quantum systems because they can be implemented using semiconductor fabrication technology. However, leading solid-state approaches function only at temperatures below 100 millikelvin, where cooling power is extremely limited, and this severely affects the prospects of practical quantum computation.
View Article and Find Full Text PDFExtremely long coherence times, excellent single-qubit gate fidelities, and two-qubit logic have been demonstrated with silicon metal-oxide-semiconductor spin qubits, making it one of the leading platforms for quantum information processing. Despite this, a long-standing challenge in this system has been the demonstration of tunable tunnel coupling between single electrons. Here we overcome this hurdle with gate-defined quantum dots and show couplings that can be tuned on and off for quantum operations.
View Article and Find Full Text PDFWe investigate the magnetic field and temperature dependence of the single-electron spin lifetime in silicon quantum dots and find a lifetime of 2.8 ms at a temperature of 1.1 K.
View Article and Find Full Text PDFRecent advances in quantum error correction codes for fault-tolerant quantum computing and physical realizations of high-fidelity qubits in multiple platforms give promise for the construction of a quantum computer based on millions of interacting qubits. However, the classical-quantum interface remains a nascent field of exploration. Here, we propose an architecture for a silicon-based quantum computer processor based on complementary metal-oxide-semiconductor (CMOS) technology.
View Article and Find Full Text PDF