Publications by authors named "H G HOVENKAMP"

Introduction: Determining the optimal timing for extubation can be challenging in the intensive care. In this study, we aim to identify predictors for extubation failure in critically ill patients with COVID-19.

Methods: We used highly granular data from 3464 adult critically ill COVID patients in the multicenter Dutch Data Warehouse, including demographics, clinical observations, medications, fluid balance, laboratory values, vital signs, and data from life support devices.

View Article and Find Full Text PDF

Unlabelled: Unexpected ICU readmission is associated with longer length of stay and increased mortality. To prevent ICU readmission and death after ICU discharge, our team of intensivists and data scientists aimed to use AmsterdamUMCdb to develop an explainable machine learning-based real-time bedside decision support tool.

Derivation Cohort: Data from patients admitted to a mixed surgical-medical academic medical center ICU from 2004 to 2016.

View Article and Find Full Text PDF

Background: The Coronavirus disease 2019 (COVID-19) pandemic has underlined the urgent need for reliable, multicenter, and full-admission intensive care data to advance our understanding of the course of the disease and investigate potential treatment strategies. In this study, we present the Dutch Data Warehouse (DDW), the first multicenter electronic health record (EHR) database with full-admission data from critically ill COVID-19 patients.

Methods: A nation-wide data sharing collaboration was launched at the beginning of the pandemic in March 2020.

View Article and Find Full Text PDF

Background: The identification of risk factors for adverse outcomes and prolonged intensive care unit (ICU) stay in COVID-19 patients is essential for prognostication, determining treatment intensity, and resource allocation. Previous studies have determined risk factors on admission only, and included a limited number of predictors. Therefore, using data from the highly granular and multicenter Dutch Data Warehouse, we developed machine learning models to identify risk factors for ICU mortality, ventilator-free days and ICU-free days during the course of invasive mechanical ventilation (IMV) in COVID-19 patients.

View Article and Find Full Text PDF