: Among strategies to limit ischemia/reperfusion (IR) injuries in transplantation, cell therapy using stem cells to condition/repair transplanted organs appears promising. We hypothesized that using a cell therapy based on extracellular vesicles (EVs) derived from urine progenitor cells (UPCs) during hypothermic and normothermic machine perfusion can prevent IR-related kidney damage. We isolated and characterized porcine UPCs and their extracellular vesicles (EVs).
View Article and Find Full Text PDFNormothermic machine perfusion (NMP) is a clinical strategy to reduce renal ischemia-reperfusion injury (IRI). Optimal NMP should restore metabolism and minimize IRI induced inflammatory responses. Microdialysis was used to evaluate renal metabolism.
View Article and Find Full Text PDFOrgans obtained from brain dead donors can have suboptimal outcomes. Activation of the innate immune system and translocation of intestinal bacteria could be causative. Thirty two pigs were assigned to control, brain death (BD), BD + luminal intestinal polyethylene glycol (PEG), and BD + luminal intestinal University of Wisconsin solution (UW) groups.
View Article and Find Full Text PDFIntroduction: A growing interest in renal normothermic machine perfusion (NMP) has resulted in more clinically available perfusion devices. While all perfusion systems have the same aim, there are significant differences in their circuits, pumps, sensors, and software. Therefore, our objective was to assess the impact of different perfusion protocols and devices on kidney function and perfusion parameters during NMP.
View Article and Find Full Text PDFIntroduction: Normothermic machine perfusion (NMP) of donor kidneys provides the opportunity to assess and improve organ viability prior to transplantation. This study explored the necessity of an oxygen carrier during NMP and whether the hemoglobin-based oxygen carrier (HBOC-201) is a suitable alternative to red blood cells (RBCs).
Methods: Porcine kidneys were perfused with a perfusion solution containing either no-oxygen carrier, RBCs, or HBOC-201 for 360 min at 37°C.