The recent return of samples from asteroid 162173 Ryugu provides a first insight into early Solar System prebiotic evolution from known planetary bodies. Ryugu's samples are CI chondrite-like, rich in water and organic material, and primarily composed of phyllosilicate. This phyllosilicate surrounds micron to submicron macromolecular organic particles known as insoluble organic matter.
View Article and Find Full Text PDFThe history of mare volcanism critically informs the thermal evolution of the Moon. However, young volcanic eruptions are poorly constrained by remote observations and limited samples, hindering an understanding of mare eruption flux over time. The Chang'e-5 mission returned the youngest lunar basalts thus far, offering a window into the Moon's late-stage evolution.
View Article and Find Full Text PDFElectrostatic discharge experiments under simulated martian atmospheric conditions indicate that atmospheric CO has been sequestered into carbonate by the Mars dust activities during the Amazonia era.
View Article and Find Full Text PDFEnviron Microbiol
July 2021
Astrobiology is mistakenly regarded by some as a field confined to studies of life beyond Earth. Here, we consider life on Earth through an astrobiological lens. Whereas classical studies of microbiology historically focused on various anthropocentric sub-fields (such as fermented foods or commensals and pathogens of crop plants, livestock and humans), addressing key biological questions via astrobiological approaches can further our understanding of all life on Earth.
View Article and Find Full Text PDFAdvanced microanalytical techniques such as high-resolution transmission electron microscopy (HRTEM), atom probe tomography (APT), and synchrotron-based scanning transmission X-ray microscopy (STXM) enable one to characterize the structure and chemical and isotopic compositions of natural materials down towards the atomic scale. Dual focused ion beam-scanning electron microscopy (FIB-SEM) is a powerful tool for site-specific sample preparation and subsequent analysis by TEM, APT, and STXM to the highest energy and spatial resolutions. FIB-SEM also works as a stand-alone technique for three-dimensional (3D) tomography.
View Article and Find Full Text PDF