A series of macrocyclic 3-aminopyrrolidinone farnesyltransferase inhibitors (FTIs) has been synthesized. Compared with previously described linear 3-aminopyrrolidinone FTIs such as compound 1, macrocycles such as 49 combined improved pharmacokinetic properties with a reduced potential for side effects. In dogs, oral bioavailability was good to excellent, and increases in plasma half-life were due to attenuated clearance.
View Article and Find Full Text PDFFarnesyl:protein transferase (FPTase) inhibitors (FTIs) were originally developed as potential anticancer agents targeting the ras oncogene and are currently in clinical trials. Whereas FTIs inhibit the farnesylation of Ha-Ras, they do not completely inhibit the prenylation of Ki-Ras, the allele most frequently mutated in human cancers. Whereas farnesylation of Ki-Ras is blocked by FTIs, Ki-Ras remains prenylated in FTI-treated cells because of its modification by the related prenyltransferase, geranylgeranyl:protein transferase type I (GGPTase-I).
View Article and Find Full Text PDFA series of amino acid-based linkers was used to investigate the effects of various substituents upon the potency, pharmacokinetic properties, and conformation of macrocyclic farnesyl-protein transferase inhibitors (FTIs). As a result of the studies described herein, highly potent FTIs with improved pharmacokinetic profiles have been identified.
View Article and Find Full Text PDFA series of 2-arylindole-3-acetamide farnesyl protein transferase inhibitors has been identified. The compounds inhibit the enzyme in a farnesyl pyrophosphate-competitive manner and are selective for farnesyl protein transferase over the related enzyme geranylgeranyltransferase-I. A representative member of this series of inhibitors demonstrates equal effectiveness against HDJ-2 and K-Ras farnesylation in a cell-based assay when geranylgeranylation is suppressed.
View Article and Find Full Text PDFFor Ras oncoproteins to transform mammalian cells, they must be posttranslationally modified with a farnesyl group in a reaction catalyzed by the enzyme farnesyl:protein transferase (FPTase). Inhibitors of FPTase have therefore been developed as potential anticancer agents. These compounds reverse many of the malignant phenotypes of Ras-transformed cells in culture and inhibit the growth of tumor xenografts in nude mice.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.