Publications by authors named "H G Beaton"

BACE1 is responsible for the first step in APP proteolysis, leading to toxic Aβ production, and has been indicated to play a key role in the pathogenesis of Alzheimer's disease. The related isoform BACE2 is thought to be involved in processing of the pigment cell-specific melanocyte protein. To avoid potential effects on pigmentation, we investigated the feasibility for developing isoform-selective BACE1 inhibitors.

View Article and Find Full Text PDF

Diabetic nephropathy is the most common microvascular complication of diabetes mellitus, manifesting as mesangial expansion, glomerular basement membrane thickening, glomerular sclerosis, and progressive tubulointerstitial fibrosis leading to end-stage renal disease. Here we describe the functional characterization of Wnt6, whose expression is progressively lost in diabetic nephropathy and animal models of acute tubular injury and renal fibrosis. We have shown prominent Wnt6 and frizzled 7 (FzD7) expression in the mesonephros of the developing mouse kidney, suggesting a role for Wnt6 in epithelialization.

View Article and Find Full Text PDF

The discovery of potent small molecule dual antagonists of the human CCR3 and H(1) receptors is described for the treatment of allergic diseases, for example, asthma and allergic rhinitis. Optimizing in vitro potency and metabolic stability, starting from a CCR1 lead compound, led to compound 20 with potent dual CCR3/H(1) activity and in vitro metabolic stability.

View Article and Find Full Text PDF

The second part of this communication focuses on the resolution of issues surrounding the series of hydroxyamide phenoxypiperidine CCR3/H(1) dual antagonists described in Part I. This involved further structural exploration directed at reducing metabolism and leading to the identification of compound 60 with a greatly improved in vivo pharmacokinetic profile.

View Article and Find Full Text PDF

By careful analysis of experimental X-ray ligand crystallographic protein data across several inhibitor series we have discovered a novel, potent and selective series of iNOS inhibitors exemplified by compound 8.

View Article and Find Full Text PDF