Publications by authors named "H Ferrero"

The endometrium plays a fundamental role in the reproductive system yet many etiologies of infertility-related endometrial diseases such as endometriosis, adenomyosis, Asherman's syndrome or endometrial cancer remain unknown. There are currently no treatments that minimize the effects of this devastating disorder. Appropriate model systems that closely mimic the architecture and function of the endometrium in healthy and pathological states are needed to understand the underlying molecular pathways and develop novel or more effective treatments.

View Article and Find Full Text PDF

Study Question: What is the transcriptomic response of human blastocysts following internalization of extracellular vesicles (EVs) secreted by the human endometrium?

Summary Answer: EVs secreted by the maternal endometrium induce a transcriptomic response in human embryos that modulates molecular mechanisms related to embryo development and implantation.

What Is Known Already: EVs mediate intercellular communication by transporting various molecules, and endometrial EVs have been postulated to be involved in the molecular regulation of embryo implantation. Our previous studies showed that endometrial EVs carry miRNAs and proteins associated with implantation events that can be taken up by human blastocysts; however, no studies have yet investigated the transcriptomic response of human embryos to this EV uptake, which is crucial to demonstrate the functional significance of this communication system.

View Article and Find Full Text PDF

Intracellular bacterial pathogens pose significant public health challenges due to their ability to evade immune defenses and conventional antibiotics. Drug repurposing has recently been explored as a strategy to discover new therapeutic uses for established drugs to combat these infections. Utilizing high-throughput screening, bioinformatics, and systems biology, several existing drugs have been identified with potential efficacy against intracellular bacteria.

View Article and Find Full Text PDF

Background: Women with adenomyosis are characterized by having defective decidualization, impaired endometrial receptivity and/or embryo-maternal communication, and implantation failure. However, the molecular mechanisms underlying adenomyosis-related infertility remain unknown, mainly because of the restricted accessibility and the difficult preservation of endometrial tissue in vitro. We have recently shown that adenomyosis patient-derived endometrial organoids, maintain disease-specific features while differentiated into mid-secretory and gestational endometrial phase, overcoming these research barriers and providing a robust platform to study adenomyosis pathogenesis and the associated molecular dysregulation related to implantation and pregnancy disorders.

View Article and Find Full Text PDF

The endometrium plays a vital role in fertility, providing a receptive environment for embryo implantation and development. Understanding the endometrial physiology is essential for developing new strategies to improve reproductive healthcare. Human endometrial organoids (hEOs) are emerging as powerful models for translational research and personalized medicine.

View Article and Find Full Text PDF