Bistability enables adaptive designs with tunable deflections for applications including morphing wings, robotic grippers, and consumer products. Composite laminates may be designed to exhibit bistability due to pre-strains that develop during the processing of the polymer matrix, enabling fast reconfiguration between two stable shapes. Unfortunately, designing bistable laminates is challenging because of their highly nonlinear behavior.
View Article and Find Full Text PDFDental restorations are in increasing demand, yet their success rate strongly decreases after 5-10 years post-implantation, attributed in part to mismatching properties with the surrounding buccal environment that causes failures and wear. Among current research to address this issue, biomimetic approaches are promising. Nacre-like ceramic composites are particularly interesting because they combine multiple antagonistic properties making them more resistant to failure in harsh environment than other materials.
View Article and Find Full Text PDFThermal rectification is a phenomenon of great practical importance where heat transfer is preferential in one direction. Programmable control of heat transfer in 3D space is key to enable thermal rectification at the macroscale but is rarely realized in natural materials or in current existing devices that are constructed at the nano and microscales with high system complexity. Here, modularly designed bulk metamaterials that can break the symmetry of heat transfer from one direction to the other are created, leading to thermal rectification in convergent or divergent states by tuning the metamaterial microstructural design.
View Article and Find Full Text PDFBioinspired composites exhibit well-defined microstructures, where anisotropic ceramic particles are assembled and bonded by an organic matrix. However, it is difficult to fabricate these composites where both the ceramic particles and organic matrix work together to unlock toughening mechanisms, such as shear dissipation, particle rotation and interlocking, etc, that lead to stiff, strong, and tough mechanical properties. Here, we produce composites inspired by seashells, made of alumina microplatelets assembled in complex microstructures and that are physically bonded by a small amount of interpenetrated polymer network (IPN) made of polyacrylamide (PAM) and poly--isopropylacrylamide (PNIPAM).
View Article and Find Full Text PDF