Exposure to single molecules under laboratory conditions has led to a better understanding of the mechanisms of action (MeOAs) and effects of pharmaceutical active compounds (PhACs) on non-target organisms. However, not taking the co-occurrence of contaminants in the environment and their possible interactions into account may lead to underestimation of their impacts. In this study, we combined untargeted metabolomics and proteogenomics approaches to assess the mixture effects of diclofenac, carbamazepine and venlafaxine on marine mussels (Mytilus galloprovincialis).
View Article and Find Full Text PDFOver the last decade, there has been increased concern about the occurrence of diclofenac (DCF) in aquatic ecosystems. Living organisms could be exposed to this "pseudo-persistent" pharmaceutical for more than one generation. In this multigenerational study, we assessed the DCF impact at environmentally relevant concentrations on the life history and behavioral parameters of two offspring generations (F1 and F2) of the Lymnaea stagnalis freshwater gastropod.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2022
The metabolism of organic contaminants in Lymnaea stagnalis freshwater gastropod remains unknown. Yet, pharmaceuticals-like the NSAID diclofenac-are continuously released in the aquatic environment, thereby representing a risk to aquatic organisms. In addition, lower invertebrates may be affected by this pollution since they are likely to bioaccumulate contaminants.
View Article and Find Full Text PDFThere is growing evidence of the presence of pharmaceuticals in natural waters and their accumulation in aquatic organisms. While their mode of action on non-target organisms is still not clearly understood, their effects warrant assessment. The present study assessed the metabolome of the Mediterranean mussel () exposed to a 10 µg/L nominal concentration of the antidepressant venlafaxine (VLF) at 3 time-points (1, 3, and 7 days).
View Article and Find Full Text PDFScientists often set ambitious targets using environmental metabolomics to address challenging ecotoxicological issues. This promising approach has a high potential to elucidate the mechanisms of action (MeOAs) of contaminants (in hazard assessments) and to develop biomarkers (in environmental biomonitoring). However, metabolomics fingerprints often involve a complex mixture of molecular effects that are hard to link to a specific MeOA (if detected in the analytical conditions used).
View Article and Find Full Text PDF