Purpose: Hepatocellular carcinoma is the most frequent liver cancer and constitutes one of the main causes of cancer mortality. The combination of targeted therapy drugs, such as selumetinib and perifosine that inhibit cell signaling pathways involved in cell survival and proliferation, with the expression of tumor suppressor transgenes, such as PTEN, may result in an efficient therapeutic approach against HCC. Thus, the main objective of this work was to develop a new lipid-polymer hybrid nanosystem (HNP), composed of a PLGA core coated with a pH-sensitive lipid bilayer functionalized with the targeting ligand GalNAc, in order to specifically and efficiently deliver this novel combination of therapeutic agents in HCC cells.
View Article and Find Full Text PDFThe chemosensitization of tumor cells by gene therapy represents a promising strategy for hepatocellular carcinoma (HCC) treatment. In this regard, HCC-specific and highly efficient gene delivery nanocarriers are urgently needed. For this purpose, novel lactobionic acid-based gene delivery nanosystems were developed to downregulate c-MYC expression and sensitize tumor cells to low concentration of sorafenib (SF).
View Article and Find Full Text PDFCopolymers composed of low-molecular-weight polyethylenimine (PEI) and amphiphilic Pluronics® are safe and efficient non-viral vectors for pDNA transfection. A variety of Pluronic® properties provides a base for tailoring transfection efficacy in combination with the unique biological activity of this polymer group. In this study, we describe the preparation of new copolymers based on hydrophilic Pluronic® F68 and PEI (F68PEI).
View Article and Find Full Text PDFJ Control Release
January 2023
Chimeric antigen receptor T cell (CAR T cell) therapy is a revolutionary approach approved by the FDA and EMA to treat B cell malignancies and multiple myeloma. The production of these T cells has been done through viral vectors, which come with safety concerns, high cost and production challenges, and more recently also through electroporation, which can be extremely cytotoxic. In this context, nanosystems can constitute an alternative to overcome the challenges associated with current methods, resulting in a safe and cost-effective platform.
View Article and Find Full Text PDF