Publications by authors named "H Fakhrai-Rad"

This study compared the performance of four serology assays for Coronavirus Disease 2019 (COVID-19) and investigated whether COVID-19 disease history correlates with assay performance. Samples were tested at Northshore using the Elecsys Anti-SARS-CoV-2 (Roche Diagnostics), Access SARS-CoV-2 IgG anti-RBD (Beckman Coulter), and LIAISON SARS-CoV-2 S1/S2 IgG (DiaSorin) as well as at Genalyte using Maverick Multi-Antigen Serology Panel. The study included one hundred clinical samples collected before December 2019 and ninety-seven samples collected from convalescent plasma donors originally diagnosed with COVID-19 by PCR.

View Article and Find Full Text PDF

The aim of this study was to measure the impact of genetic data in improving the prediction of type 2 diabetes (T2D) in the Malmö Diet and Cancer Study cohort. The current study was performed in 3,426 Swedish individuals and utilizes of a set of genetic and environmental risk data. We first validated our environmental risk model by comparing it to both the Finnish Diabetes Risk Score and the T2D risk model derived from the Framingham Offspring Study.

View Article and Find Full Text PDF

Robust SNP genotyping technologies and data analysis programs have encouraged researchers in recent years to use SNPs for linkage studies. Platforms used to date have been 10 K chip arrays, but the possible value of interrogating SNPs at higher densities has been considered. Here, we present a genome-wide linkage analysis by means of a 500 K SNP platform.

View Article and Find Full Text PDF

Niddm1i, a 16-Mb locus within the major diabetes QTL in the diabetic GK rat, causes impaired glucose tolerance in the congenic NIDDM1I strain. Niddm1i is homologous to both human and mouse regions linked with type 2 diabetes susceptibility. We employed multiple QTL analyses of congenic F2 progeny selected for one recombination event within Niddm1i combined with characterization of subcongenic strains.

View Article and Find Full Text PDF

Identification of the genetic basis of common disease may require comprehensive sequence analysis of coding regions and regulatory elements in patients and controls to find genetic effects caused by rare or heterogeneous mutations. In this study, we demonstrate how mismatch repair detection on tag arrays can be applied in a case-control study. Mismatch repair detection allows >1,000 amplicons to be screened for variations in a single laboratory reaction.

View Article and Find Full Text PDF