Publications by authors named "H FURUE"

We demonstrated previously that sorting nexin 25 (SNX25) in nerve-associated macrophages plays critical roles in pain sensation by regulating tissue NGF content under both physiological and neuropathic conditions. In the present study, we apply the SNX25-NGF paradigm to tactile perception by showing that Snx25 mice or macrophage-specific Snx25 conditional knock-out (mcKO) mice had weaker responses to tactile stimuli in normal conditions. Snx25 mcKO mice responded poorly to transcutaneous electrical stimuli at a frequency of 5 Hz (C fiber responses), but normally to stimuli at a frequency of 250 Hz (Aδ fiber responses) or of 2000 Hz (Aβ fiber responses).

View Article and Find Full Text PDF
Article Synopsis
  • Merkel cell-neurite complexes (MNCs) help rodents feel touch in sensitive areas like their paw skin and whiskers by sending signals called slowly adapting type 1 (SA1) impulses.
  • Scientists found that special channels, called ASICs, are really important for these SA1 impulses when rodents feel pressure on their skin.
  • They tested this by blocking ASICs in experiments and found that the amount of SA1 impulses dropped, especially in mice without a specific ASIC channel (ASIC3), showing these channels are crucial for the sense of touch in rodent paws.
View Article and Find Full Text PDF

The anterior cingulate cortex (ACC) responds to noxious and innocuous sensory inputs, and integrates them to coordinate appropriate behavioral reactions. However, the role of the projections of ACC neurons to subcortical areas and their influence on sensory processing are not fully investigated. Here, we identified that ACC neurons projecting to the contralateral claustrum (ACC) preferentially respond to contralateral mechanical sensory stimulation.

View Article and Find Full Text PDF

We recently used Nav1.8-ChR2 mice in which Nav1.8-expressing afferents were optogenetically tagged to classify mechanosensitive afferents into Nav1.

View Article and Find Full Text PDF

Tactile discrimination, the ability to differentiate objects' physical properties such as texture, shape, and edges, is essential for environmental exploration, social interaction, and early childhood development. This ability heavily relies on Merkel cell-neurite complexes (MNCs), the tactile end-organs enriched in the fingertips of humans and the whisker hair follicles of non-primate mammals. Although recent studies have advanced our knowledge on mechanical transduction in MNCs, it remains unknown how tactile signals are encoded at MNCs.

View Article and Find Full Text PDF