Publications by authors named "H F Robey"

X-ray opacity measurements on the National Ignition Facility (NIF) are in the process of reproducing earlier measurements from the Sandia Z Facility, in particular for oxygen and iron plasmas. These measurements have the potential to revise our understanding of the "solar problem" and of the hot degenerate Q class white dwarf structure by probing plasma conditions near the base of their convection zones. Accurate opacity measurements using soft x-ray Bragg crystal spectrometers require correction for higher-order diffraction effects.

View Article and Find Full Text PDF

Indirect Drive Inertial Confinement Fusion Experiments on the National Ignition Facility (NIF) have achieved a burning plasma state with neutron yields exceeding 170 kJ, roughly 3 times the prior record and a necessary stage for igniting plasmas. The results are achieved despite multiple sources of degradations that lead to high variability in performance. Results shown here, for the first time, include an empirical correction factor for mode-2 asymmetry in the burning plasma regime in addition to previously determined corrections for radiative mix and mode-1.

View Article and Find Full Text PDF

The double-shell inertial confinement fusion campaign, which consists of an aluminum ablator, a foam cushion, a high-Z pusher (tungsten or molybdenum), and liquid deuterium-tritium (DT) fuel, aims for its first DT filled implosions on the National Ignition Facility (NIF) in 2024. The high-Z, high density pusher does not allow x-rays to escape the double-shell capsule. Therefore, nuclear diagnostics such as the Gamma Reaction History (GRH) diagnostic on the NIF are crucial for understanding high-Z implosion performance.

View Article and Find Full Text PDF
Article Synopsis
  • * This experiment produced 2.05 MJ of laser energy, resulting in 3.1 MJ of total fusion yield, which exceeds the Lawson criterion for ignition, demonstrating a key milestone in fusion research.
  • * The report details the advancements in target design, laser technology, and experimental methods that contributed to this historic achievement, validating over five decades of research in laboratory fusion.
View Article and Find Full Text PDF

The goal of the Xflows experimental campaign is to study the radiation flow on the National Ignition Facility (NIF) reproducing the sensitivity of the temperature (±8 eV, ±23 μm) and density (±11 mg/cc) measurements of the COAX platform [Johns et al., High Energy Density Phys. 39, 100939 (2021); Fryer et al.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9bfd3senpc6a6a6537l2dj901djmlfo3): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once