Publications by authors named "H F Lee"

Cancer survivors have an increased risk of developing Type 2 diabetes compared to the general population. Patients treated with cisplatin, a common chemotherapeutic agent, are more likely to develop metabolic syndrome and Type 2 diabetes than age- and sex-matched controls. Surprisingly, the impact of cisplatin on pancreatic islets has not been reported.

View Article and Find Full Text PDF

Combination therapy with checkpoint inhibitors blocks inhibitory immune cell signaling and improves clinical responses to anticancer treatments. However, continued development of innovative and controllable delivery systems for immune-stimulating agents is necessary to optimize clinical responses. Herein, we engineered to deliver recombinant granulocyte macrophage colony stimulating factor (GM-CSF) in a controllable manner for combination treatment with a programmed death-ligand 1 (PD-L1) inhibitor.

View Article and Find Full Text PDF

Background: Community acquired lower respiratory tract infection (LRTI) is a leading cause for hospitalization in children and important cause for antibiotic prescription. We aimed to describe the aetiology of LRTI in children and analyse factors associated with bacterial or viral infection.

Methods: Patients aged < 19 years with a diagnosis of LRTI were identified from the Observational Medical Outcomes Partnership Common Data Model Database of Seoul National University Bundang Hospital from January 2005-July 2019, and their clinical characteristics were obtained from the electronic medical records and retrospectively reviewed.

View Article and Find Full Text PDF

Seawater batteries (SWBs) have emerged as a next-generation battery technology that does not rely on lithium, a limited resource essential for lithium-ion batteries. Instead, SWBs utilize abundant sodium from seawater, offering a sustainable alternative to conventional battery technologies. Previous studies have demonstrated the feasibility of achieving high energy densities in SWB anodes using vertically aligned electrodes.

View Article and Find Full Text PDF

Ruthenium (Ru)-based electrocatalysts have shown promise for anion exchange membrane water electrolysis (AEMWE) due to their ability to facilitate water dissociation in the hydrogen evolution reaction (HER). However, their performance is limited by strong hydrogen binding, which hinders hydrogen desorption and water re-adsorption. This study reports the development of RuNi nanoalloys supported on MoO, which optimize the hydrogen binding strength at Ru sites through modulation by adjacent Ni atoms.

View Article and Find Full Text PDF