Advanced glycation end-products (AGEs) are products of a non-enzymatic reaction between amino acids and reducing sugars. Glycated human serum albumin (HSA) increases in diabetics as a consequence of elevated blood glucose levels and glycating metabolites like methylglyoxal (MGO). The impact of different types of glycation on the immunomodulatory properties of HSA is poorly understood and is studied here.
View Article and Find Full Text PDFPorcine epidemic diarrhea virus (PEDV) is a coronavirus that induces diarrhea in pigs, leading to severe economic losses in the global pig industry. Currently, effective antiviral treatments for porcine epidemic diarrhea (PED) are rarely available for clinical use. Zinc (Zn), an essential mineral, is known to reduce diarrhea in piglets transitioning from milk to solid feed by modulating immune system activity.
View Article and Find Full Text PDFSecretory IgA is crucial for preventing the invasion of entero-pathogens via intestinal mucosa. While it is well-established that Transforming growth factor β1 (TGF-β1) regulates IgA production in human and mouse B cells, our previous investigation revealed different functions of TGF-β1 in IgA generation in pigs compared with humans and mice, with the underlying mechanism remaining elusive. In this study, IgM B cells from porcine Peyer's patches (PPs) were isolated and stimulated with recombinant porcine TGF-β1 to evaluate the effect of TGF-β1 on pigs.
View Article and Find Full Text PDFThe intestinal microbiota contributes to gut immune homeostasis, where short-chain fatty acids (SCFAs) function as the major mediators. We aimed to elucidate the immunomodulatory effects of acetate, propionate, and butyrate. With that in mind, we sought to characterise the expression of SCFA receptors and transporters as well as SCFAs' impact on the activation of different immune cells.
View Article and Find Full Text PDFIgA plays a vital role in defending against the infectious pathogens. However, the specific regulatory pathways involved in IgA secretion in the context of PEDV infection have remained elusive. Therefore, in this study, we explore the molecular mechanisms underlying IgA secretion in response to infection, with a particular focus on PEDV, a devastating enteric virus affecting global swine production.
View Article and Find Full Text PDF