Publications by authors named "H F Hintz"

Unlabelled: Cancer-associated fibroblasts (CAF) are a prominent cell type within the tumor microenvironment (TME) where they are known to promote cancer cell growth and survival, angiogenesis, drug resistance, and immunosuppression. The transmembrane prolyl protease fibroblast activation protein (FAP) is expressed on the surface of highly protumorigenic CAFs found in the stroma of nearly every cancer of epithelial origin. The widespread expression of FAP has made it an attractive therapeutic target based on the underlying hypothesis that eliminating protumorigenic CAFs will disrupt the cross-talk between components of TME resulting in cancer cell death and immune infiltration.

View Article and Find Full Text PDF

To characterize structure and molecular order in the nanometre range, distances between electron spins and their distributions can be measured via dipolar spin-spin interactions by different pulsed electron paramagnetic resonance experiments. Here, for the single-frequency technique for refocusing dipolar couplings (SIFTER), the buildup of dipolar modulation signal and intermolecular contributions is analysed for a uniform random distribution of monoradicals and biradicals in frozen glassy solvent by using the product operator formalism for electron spin . A dipolar oscillation artefact appearing at both ends of the SIFTER time trace is predicted, which originates from the weak coherence transfer between biradicals.

View Article and Find Full Text PDF

Objectives: Recently, Berg and Kenyhercz (2017) developed a free web-based software package, (hu)MANid, that classifies mandibles by ancestry and sex based on either linear or mixture discriminant analysis of 11 osteometric and six morphoscopic variables. The metric and morphoscopic variables assessed using (hu)MANid have been determined to be highly replicable, however, few external validation studies have been conducted.

Materials And Methods: This article provides a test of the (hu)MANid analytical software using an independent sample (n = 52) of Native American mandibles from the Great Lakes region to investigate the accuracy of the program for identifying this important demographic group.

View Article and Find Full Text PDF

We report the systematic development of an electrooxidative methodology that translates stoichiometric C-H fluorination reactivity of an isolable Cu fluoride complex into a catalytic process. The critical challenges of electrocatalysis with a highly reactive Cu species were addressed by the judicious selection of electrolyte, F source, and sacrificial electron acceptor. Catalyst-controlled C-H fluorination occurs with a preference for hydridic C-H bonds with high bond dissociation energies over weaker but less hydridic C-H bonds.

View Article and Find Full Text PDF

While the electrooxidative activation of carboxylic acids is an attractive synthetic methodology, the resulting transformations are generally limited to either homocoupling or further oxidation followed by solvent capture. These reactions require extensive electrolysis at high potentials, which ultimately renders the methodology incompatible with metal catalysts that could possibly provide new and complementary product distributions. This work establishes a proof-of-concept for a rare and synthetically-underutilized strategy for selective electrooxidation of carboxylic acids in the presence of oxidatively-sensitive catalysts that control reaction selectivity.

View Article and Find Full Text PDF