Publications by authors named "H F Harlow"

Article Synopsis
  • Neuronal hyperexcitability is a key feature of epilepsy, influenced by microglia, the brain's immune cells, which can affect neuronal activity.
  • Researchers developed a co-culture model using human induced pluripotent stem cell (hiPSC)-derived neurons with a genetic mutation (Nav1.2-L1342P) linked to epilepsy and observed that microglia can reduce excitability in these neurons.
  • The study found that microglia increased their branching and calcium signaling when interacting with affected neurons, ultimately lowering sodium channel activity and glutamate release, highlighting their role in managing hyperexcitability caused by epilepsy-related genetic mutations.
View Article and Find Full Text PDF

Chitosan nanoparticles (CS-NPs) are currently under investigation for a wide range of applications in nanomedicine. We investigated the structural, morphological, and molecular properties of CS-NPs synthesized via ionic gelation and designed specifically for drug delivery. The CS-NPs were prepared at concentrations ranging from 0.

View Article and Find Full Text PDF

Neuronal hyperexcitability is a hallmark of seizures. It has been recently shown in rodent models of seizures that microglia, the brain's resident immune cells, can respond to and modulate neuronal excitability. However, how human microglia interacts with human neurons to regulate hyperexcitability mediated by epilepsy-causing genetic mutation found in human patients remains unknown.

View Article and Find Full Text PDF

Many wildlife species are live captured, sampled, and released; for polar bears () capture often requires chemical immobilization via helicopter darting. Polar bears reduce their activity for approximately 4 days after capture, likely reflecting stress recovery. To better understand this stress, we quantified polar bear activity (via collar-mounted accelerometers) and body temperature (via loggers in the body core [T] and periphery [T]) during 2-6 months of natural behavior, and during helicopter recapture and immobilization.

View Article and Find Full Text PDF

Apex predators can have substantial and complex ecological roles in ecosystems. However, differences in species-specific traits, population densities, and interspecific interactions are likely to determine the strength of apex predators' roles. Here we report complementary studies examining how interactions between predator per capita metabolic rate and population density influenced the biomass, population energy use, and ecological effects of apex predators on their large mammalian prey.

View Article and Find Full Text PDF