Osteoarthritis (OA) is a significant condition that profoundly impacts synovial joints, including cartilage and subchondral bone plate. Biomaterials that can impede OA progression are a promising alternative or supplement to anti-inflammatory and surgical interventions. Magnesium (Mg) alloys known for bone regeneration potential were assessed in the form of Mg microparticles regarding their impact on tissue regeneration and prevention of OA progression.
View Article and Find Full Text PDFIn this study, the interaction of pure Mg and WE43 alloy under the presence of osteoblast (OB) and osteoclast (OC) cells and their influence on the degradation of materials have been deeply analyzed. Since OB and OC interaction has an important role in bone remodeling, we examined the surface morphology and dynamic changes in the chemical composition and thickness of the corrosion layers formed on pure Mg and WE43 alloy by direct monoculture and coculture of pre-differentiated OB and OC cells in vitro. Electrochemical techniques examined the corrosion performance.
View Article and Find Full Text PDFBioact Mater
October 2024
With its main features of cartilage degeneration, subchondral bone sclerosis and osteophyte formation, osteoarthritis represents a multifactorial disease with no effective treatment options. As biomechanical shift in the trabecular network may be a driver for further cartilage degeneration, bone enhancement could possibly delay OA progression. Magnesium is known to be osteoconductive and already showed positive effects in OA models.
View Article and Find Full Text PDF