Purpose: We analyzed the expression of critical cell cycle regulators cyclin E and cyclin D1 in familial breast cancer, focusing on BRCA mutation-negative tumors. Cyclin E expression in tumors of BRCA1 or BRCA2 carriers is higher, and cyclin D1 expression lower, than in sporadic tumors. In familial non-BRCA1/2 tumors, cyclin E and cyclin D1 expression has not been studied.
View Article and Find Full Text PDFMultiple genetic loci confer susceptibility to breast and ovarian cancers. We have previously developed a model (BOADICEA) under which susceptibility to breast cancer is explained by mutations in BRCA1 and BRCA2, as well as by the joint multiplicative effects of many genes (polygenic component). We have now updated BOADICEA using additional family data from two UK population-based studies of breast cancer and family data from BRCA1 and BRCA2 carriers identified by 22 population-based studies of breast or ovarian cancer.
View Article and Find Full Text PDFIntroduction: Finding new immunohistochemical markers that are specific to hereditary breast cancer could help us to select candidates for BRCA1/BRCA2 mutation testing and to understand the biological pathways of tumour development.
Methods: Using breast cancer tumour microarrays, immunohistochemical expression of cytokeratin (CK)-5/6, CK-14 and CK-17 was evaluated in breast tumours from BRCA1 families (n = 46), BRCA2 families (n = 40), non-BRCA1/BRCA2 families (n = 358) and familial breast cancer patients with one first-degree relative affected by breast or ovarian cancer (n = 270), as well as from patients with sporadic breast cancer (n = 364). Staining for CK-5/6, CK-14 and CK-17 was compared between these groups and correlated with other clinical and histological factors.
Cyclins D1 and E play an important role in breast carcinogenesis. High cyclin E expression is common in hormone receptor negative and high grade aggressive breast cancer, whereas cyclin D1 in hormone receptor positive and low grade breast cancer. Experimental data has suggested that cyclin D1 and E mediate cell proliferation by different mechanisms in estrogen receptor (ER) positive and negative breast cancer.
View Article and Find Full Text PDFThe ataxia-telangiectasia-mutated (ATM) kinase is a key transducer of DNA damage signals within the genome maintenance machinery and a tumour suppressor whose germline mutations predispose to familial breast cancer. ATM signalling is constitutively activated in early stages of diverse types of human malignancies and cell culture models in response to oncogene-induced DNA damage providing a barrier against tumour progression. As BRCA1 and BRCA2 are also components of the genome maintenance network and their mutations predispose to breast cancer, we have examined the ATM expression in human breast carcinomas of BRCA1/2 mutation carriers, sporadic cases and familial non-BRCA1/2 patients.
View Article and Find Full Text PDF