We genotyped a population of 618 diploid potato clones derived from six independent potato-breeding programmes from NW-Europe. The diploids were phenotyped for 23 traits, using standardized protocols and common check varieties, enabling us to derive whole population estimators for most traits. We subsequently performed a genome-wide association study (GWAS) to identify quantitative trait loci (QTL) for all traits with SNPs and short-read haplotypes derived from read-backed phasing.
View Article and Find Full Text PDFMultiple QTLs control unreduced pollen production in potato. Two major-effect QTLs co-locate with mutant alleles of genes with homology to AtJAS, a known regulator of meiotic spindle orientation. In diploid potato the production of unreduced gametes with a diploid (2n) rather than a haploid (n) number of chromosomes has been widely reported.
View Article and Find Full Text PDFThe balanced segregation of homologous chromosomes during meiosis is essential for fertility and is mediated by crossovers (COs). A strong reduction of CO number leads to the unpairing of homologous chromosomes after the withdrawal of the synaptonemal complex. This results in the random segregation of univalents during meiosis I and ultimately to the production of unbalanced and sterile gametes.
View Article and Find Full Text PDFUnlabelled: Genome-wide association studies (GWAS) are a useful tool to unravel the genetic architecture of complex traits, but the results can be difficult to interpret. Population structure, genetic heterogeneity, and rare alleles easily result in false positive or false negative associations. This paper describes the analysis of a GWAS panel combined with three bi-parental mapping populations to validate GWAS results, using phenotypic data for steroidal glycoalkaloid (SGA) accumulation and the ratio (SGR) between the two major glycoalkaloids α-solanine and α-chaconine in potato tubers.
View Article and Find Full Text PDFMol Plant
March 2022
Cultivated potato is a clonally propagated autotetraploid species with a highly heterogeneous genome. Phased assemblies of six cultivars including two chromosome-scale phased genome assemblies revealed extensive allelic diversity, including altered coding and transcript sequences, preferential allele expression, and structural variation that collectively result in a highly complex transcriptome and predicted proteome, which are distributed across the homologous chromosomes. Wild species contribute to the extensive allelic diversity in tetraploid cultivars, demonstrating ancestral introgressions predating modern breeding efforts.
View Article and Find Full Text PDF