Spray-dried amorphous solid dispersions of new chemical entities and pH-dependent soluble polymer hydroxypropyl methylcellulose acetate succinate (HPMC-AS) were found to form solid agglomerates in the gastrointestinal tract of rodents after oral administration. These agglomerates, referring to descriptions of intra-gastrointestinal aggregated oral dosage forms termed pharmacobezoars, represent a potential risk for animal welfare. Previously, we introduced an in vitro model to assess the agglomeration potential of amorphous solid dispersions from suspensions and how it can be reduced.
View Article and Find Full Text PDFThe formation of pharmacobezoars from suspensions of spray-dried amorphous solid dispersions (SD-ASDs) of new chemical entities (NCEs) and hydroxypropyl methylcellulose acetate succinate (HPMC-AS) represents a non-compound related adverse effect in preclinical oral toxicity studies in rodents. Whereas the contribution of the insolubility of the carrier polymer to this process taking place in the acidic environment of the rodent stomach is conclusive, unawareness of the extent of in vivo pharmacobezoar formation is adverse. In order to evaluate the risk of pharmacobezoar formation before in vivo administration, we subsequently introduce an in vitro model to assess the agglomeration potential of solid dispersions.
View Article and Find Full Text PDFChanging the physical state from crystalline to amorphous is an elegant method to increase the bioavailability of poorly soluble new chemical entity (NCE) drug candidates. Subsequently, we report findings from repeat-dose toxicity studies of an NCE formulated as a spray-dried amorphous solid dispersion (SD-ASD) based on hydroxypropyl methylcellulose acetate succinate (HPMC-AS) in rats. At necropsy, agglomerates of SD-ASD were found in the stomach and small intestine, which in reference to literature were termed pharmacobezoars.
View Article and Find Full Text PDF