Publications by authors named "H E Savaki"

We employed the C-deoxyglucose autoradiographic method to map the activity in the cerebellar cortex of rhesus monkeys that performed forelimb movements either in the light or in the dark and of monkeys that observed forelimb movements executed by a human experimenter. The execution of forelimb movements, both in the light and in the dark, activated the forelimb representations in the cerebellar hemispheric extensions of 1) vermian lobules IV-VI and 2) vermian lobule VIIIB, ipsilaterally to the moving forelimb. Activations in the former forelimb representation involved both a paravermal and a lateral hemispheric region.

View Article and Find Full Text PDF

In order to inform the debate whether cortical areas related to action observation provide a pragmatic or a semantic representation of goal-directed actions, we performed 2 functional magnetic resonance imaging (fMRI) experiments in humans. The first experiment, involving observation of aimless arm movements, resulted in activation of most of the components known to support action execution and action observation. Given the absence of a target/goal in this experiment and the activation of parieto-premotor cortical areas, which were associated in the past with direction, amplitude, and velocity of movement of biological effectors, our findings suggest that during action observation we could be monitoring movement kinematics.

View Article and Find Full Text PDF

Motor cognition is related to the planning and generation of actions as well as to the recognition and imagination of motor acts. Recently, there is evidence that the motor system participates not only in overt actions but also in mental processes supporting covert actions. Within this framework, we have investigated the cortical areas engaged in execution, observation, and imagination of the same action, by the use of the high resolution quantitative C-deoxyglucose method in monkeys and by fMRI in humans, throughout the entire primate brain.

View Article and Find Full Text PDF

We used fMRI to assess the human brain areas activated for execution, observation and 1st person motor imagery of a visually guided tracing task with the index finger. Voxel-level conjunction analysis revealed several cortical areas activated in common across all three motor conditions, namely, the upper limb representation of the primary motor and somatosensory cortices, the dorsal and ventral premotor, the superior and inferior parietal cortices as well as the posterior part of the superior and middle temporal gyrus including the temporo-parietal junction (TPj) and the extrastriate body area (EBA). Functional connectivity analyses corroborated the notion that a common sensory-motor fronto-parieto-temporal cortical network is engaged for execution, observation, and imagination of the very same action.

View Article and Find Full Text PDF